Premium
The helicoidal plant cell wall as a performing cellulose‐based composite
Author(s) -
Roland JeanClaude,
Reis Danièle,
Vian Brigitte,
Roy Stéphane
Publication year - 1989
Publication title -
biology of the cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.543
H-Index - 85
eISSN - 1768-322X
pISSN - 0248-4900
DOI - 10.1111/j.1768-322x.1989.tb00864.x
Subject(s) - cellulose , cell wall , cellulosic ethanol , composite number , materials science , cellulose fiber , composite material , plant cell , biophysics , fiber , polymer science , biology , botany , biochemistry , gene
The helicoidal plant cell wall can be considered as a composite in which cellulose is the constant reinforcing fiber. In order to strengthen the analogy with cholesteric liquid crystals, and taking into account a range of data, we describe a progressive series showing that cellulosic helicoidal systems are versatile and multifunctional. The following examples were considered: a) the cellulose microfibrils, with their rigid backbone possibly coated with a plastifying matrix; b) actual cholesteric cellulosic derivatives, such as in vitro liquid crystals and in vitro cellulosic mucilages; c) viscoplastic. growing cell walls; d) consolidated “stony” cell walls with their adaptation to intercellular communications. The series shows a dramatic progression from a liquid construction to what is the hardest in the plant cells, i.e. the sclerified walls.