z-logo
Premium
Molecular forms of acetylcholinesterase in mammalian smooth muscles
Author(s) -
Taxi J.,
Rieger F.
Publication year - 1986
Publication title -
biology of the cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.543
H-Index - 85
eISSN - 1768-322X
pISSN - 0248-4900
DOI - 10.1111/j.1768-322x.1986.tb00461.x
Subject(s) - vas deferens , acetylcholinesterase , biology , cholinergic , aché , acetylcholine , anatomy , neurotransmitter , medicine , endocrinology , central nervous system , enzyme , biochemistry
A comparative study of the molecular forms of acetylcholinesterase (AChE) was made in various smooth muscles (intestine, vas deferens, ciliary body, iris, nictitating membrane retractor, ureter, arteries, anococcygeus muscles) of some mammals (cat, guinea‐pig, rat, rabbit, mouse), seeking for a correlation between the presence of 16 S (asymmetric, tailed) form of AChE in smooth muscles and their type of innervation defined by morphological criteria, as well as by the nature of the main neurotransmitters involved in their neuroeffector junctions. Contrary to previous assertions, many smooth muscles contain 16 S AChE, although all those examined here exhibited a proportion clearly less than that of striated muscles. There are large species‐specific and individual variations in the percentage of 16 S AChE. The highest percentages of 16 S AChE were found in ciliary and iris muscles, which are provided with an individual (= multiunit) cholinergic innervation. The vas deferens muscles, which are also individually, but noradrenergically innervated contain practically no 16 S AChE. In the muscles having a fascicular (= unitary) innervation, the differences are striking: 16 S AChE is in rather high amount in intestine muscle layers, whereas it is very low or virtually absent in ureter or arterial muscles. Thus, the type of innervation is not clearly involved in the amount of 16 S AChE present in smooth muscles. As for the nature of neurotransmitter a clear correlation exists only in the case of individual innervation, in which only one neurotransmitter is involved or largely predominant.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here