Premium
Changes in organization and microtubule assembly activity of the centrosome during lymphocyte stimulation
Author(s) -
Schweitzer I.,
Brown D. L.
Publication year - 1985
Publication title -
biology of the cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.543
H-Index - 85
eISSN - 1768-322X
pISSN - 0248-4900
DOI - 10.1111/j.1768-322x.1985.tb00332.x
Subject(s) - centrosome , centriole , biology , microbiology and biotechnology , microtubule , centrosome cycle , microtubule organizing center , spindle pole body , cell , cell division , spindle apparatus , cell cycle , genetics
Changes in the organization of centrosomes in mouse splenic T lymphocytes stimulated by concanavalin A (con A) were examined by electron microscopy of serial sections. In both resting and stimulated lymphocytes the single centrosome consists of a pair of centrioles, satellite bodies, and pericentriolar material. In resting cell centrosomes the satellite bodies are preferentially associated with, and appear to be attached by short stalks to, one of the centrioles. The satellite bodies are the primary sites of microtubule termination in the resting cell centrosome. During stimulation by con A there is a several‐fold increase in microtubule content. This is correlated with an overall increase in centrosome size, an apparent increase in the size and in the number of satellite bodies, and a redistribution of satellite bodies to occupy a position between the two centrioles. Increased numbers of microtubules are detected terminating on the satellite bodies and in the pericentriolar material of the stimulated cell centrosome. Microtubule assembly from centrosomes in vitro was assessed by electron microscopy using detergent‐permeabilized lymphocytes that had been pretreated to remove endogenous microtubules and supplied with purified bovine brain tubulin. These studies indicate that satellite bodies are major sites of microtubule assembly in both resting and stimulated cell centrosomes and show that the centrosomes of stimulated cells assemble more microtubules in vitro than resting cell centrosomes. This parallels the increase in microtubule content in intact lymphocytes stimulated by con A and suggests that the changes in centrosome organization and microtubule assembly capacity that occur during stimulation are causally related.