z-logo
Premium
Post‐fire regeneration strategies and tree bark resistance to heating in frequently burning tropical savanna woodlands and grasslands in Ethiopia
Author(s) -
Gashaw Menassie,
Michelsen A.,
Friis I.,
Jensen M.,
Demissew Sebsebe,
Woldu Zerihun
Publication year - 2002
Publication title -
nordic journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.333
H-Index - 33
eISSN - 1756-1051
pISSN - 0107-055X
DOI - 10.1111/j.1756-1051.2002.tb01615.x
Subject(s) - biology , vegetation (pathology) , tropical savanna climate , bark (sound) , woodland , facultative , woody plant , biomass (ecology) , agronomy , dry season , wet season , seedling , botany , ecology , ecosystem , medicine , pathology
Regeneration mechanisms of vegetation and the role of tree bark resistance to frequent fire were studied in savanna woodlands and grasslands in Gambella, Western Ethiopia. Data were collected from four sites, each with three replicate plots. The variation between sites in species composition and biomass correlated with the differences in fire intensity. Foliar cover was recorded for individual plant species regenerating by sprouting from older parts of plants that had survived fire or by seedlings; records were made during the dry season and at the beginning of the wet season. Data on bark thickness and tree diameters of 12 dominant tree species were also recorded. Both facultative and obligate sprouters significantly contributed to post‐fire recovery, comprising 98.5 % of total vegetation cover. The contribution of seedlings to cover and abundance immediately following fire was negligible, but seedling density increased in the beginning of the rainy season, 4 to 5 months after fire. The importance of the sprouting and seeding strategies varied between the different plant growth forms. The highest contribution to cover and frequency was made by the most abundant grass species, which reproduced in both ways. Facultative sprouters made up 67.3 % of the vegetation cover, out of which 54 % consisted of grasses. Broad‐leaved herbs and trees/shrubs regenerating mainly by sprouting made up 31.3 % of the vegetation cover. Adaptations to fire in tree species seemed to include the development of a thick bark, once the tree has passed seedling stages. Tree bark thickness and tree diameter at breast height were strongly correlated with the time taken for cambium to reach an assumed lethal temperature of 60°C when exposed to fire, which indicated that mature trees with thick barks might resist stronger fire better than, e.g., small or young trees and trees with thin bark. However, for a given bark thickness the cambium resistance to heat varied three‐fold among species. Hence, site differences in fire intensity seemed to influence the distribution of trees depending on their bark characteristics and resistance to fire.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here