z-logo
Premium
Mild systemic hypoxia and photopic visual field sensitivity
Author(s) -
Feigl Beatrix,
Zele Andrew J.,
Stewart Ian B.
Publication year - 2011
Publication title -
acta ophthalmologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.534
H-Index - 87
eISSN - 1755-3768
pISSN - 1755-375X
DOI - 10.1111/j.1755-3768.2010.01959.x
Subject(s) - photopic vision , mesopic vision , flicker , retinal , visual field , scotopic vision , stimulus (psychology) , retina , hypoxia (environmental) , electroretinography , electrophysiology , ophthalmology , audiology , medicine , neuroscience , psychology , chemistry , oxygen , organic chemistry , electrical engineering , psychotherapist , engineering
. Purpose.  Flickering stimuli increase the metabolic demand of the retina, making it a sensitive perimetric stimulus to the early onset of retinal disease. We determine whether flickering stimuli are a sensitive indicator of vision deficits resulting from acute, mild systemic hypoxia when compared to standard static perimetry. Methods.  Static and flicker visual perimetry were performed in 14 healthy young participants while breathing 12% oxygen (hypoxia) under photopic illumination. The hypoxia visual field data were compared with the field data measured during normoxia. Absolute sensitivities (in dB) were analysed in seven concentric rings at 1°, 3°, 6°, 10°, 15°, 22° and 30° eccentricities as well as mean defect (MD) and pattern defect (PD) were calculated. Preliminary data are reported for mesopic light levels. Results.  Under photopic illumination, flicker and static visual field sensitivities at all eccentricities were not significantly different between hypoxia and normoxia conditions. The mean defect and pattern defect were not significantly different for either test between the two oxygenation conditions. Conclusion.  Although flicker stimulation increases cellular metabolism, flicker photopic visual field impairment is not detected during mild hypoxia. These findings contrast with electrophysiological flicker tests in young participants that show impairment at photopic illumination during the same levels of mild hypoxia. Potential mechanisms contributing to the difference between the visual fields and electrophysiological flicker tests including variability in perimetric data, neuronal adaptation and vascular autoregulation are considered. The data have implications for the use of visual perimetry in the detection of ischaemic/hypoxic retinal disorders under photopic and mesopic light levels.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here