z-logo
Premium
Retinal oxygenation in diabetic retinopathy
Author(s) -
HARDARSON SH,
OLAFSDOTTIR OB,
KARLSSON RA,
BEACH JM,
EYSTEINSSON T,
BENEDIKTSSON JA,
STEFANSSON E
Publication year - 2009
Publication title -
acta ophthalmologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.534
H-Index - 87
eISSN - 1755-3768
pISSN - 1755-375X
DOI - 10.1111/j.1755-3768.2009.2461.x
Subject(s) - retinal , medicine , diabetic retinopathy , ophthalmology , venule , retinopathy , retina , oxygen saturation , diabetes mellitus , oxygenation , arteriole , microcirculation , endocrinology , oxygen , chemistry , biology , organic chemistry , neuroscience
Purpose Diabetic retinopathy (DR) is believed to cause retinal tissue hypoxia by damaging retinal capillaries. The purpose of this study was to examine the effect of diabetic retinopathy on oxygen saturation in retinal arterioles and venules. Methods The retinal oximeter (Oxymap ehf., Reykjavik, Iceland) is composed of a fundus camera, beam splitter and light filters. Specialized software calculates relative oxygen saturation from light absorption at two wavelengths of light (605nm and 586nm). One first or second degree temporal arteriole and venule were measured in one eye of 31 healthy individual and 28 patients with diabetic retinopathy. The diabetic patients had background DR (n=6), macular oedema (n=7), untreated preproliferative or proliferative DR (n=7) or stable proliferative DR after treatment (n=8). Statistical analyses were performed with an unpaired t‐test, one‐way ANOVA and Dunnett's post test. Results Retinal arteriolar saturation was 93±4% (n=31, mean±SD) in healthy subjects and 101±6% (n=28) in patients with DR (p<0.0001). Retinal venular saturation was 58±6% in healthy subjects and 67±8% in diabetic patients (p<0.0001). Arteriolar and venular saturation was higher in all subgroups of diabetic patients (see methods) than in healthy subjects. Conclusion Increased oxygen saturation in retinal vessels in diabetic retinopathy, also found by other researchers, is consistent with poor distribution of blood and oxygen to the retinal tissue rather than decreased total retinal blood flow. Poor distribution of oxygen may be caused by capillary dropouts and shunts as well as thickening of the capillary walls.Commercial interest

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here