z-logo
open-access-imgOpen Access
A New Class of Human Mast Cell and Peripheral Blood Basophil Stabilizers that Differentially Control Allergic Mediator Release
Author(s) -
Norton Sarah K.,
Dellinger Anthony,
Zhou Zhiguo,
Lenk Robert,
MacFarland Darren,
Vonakis Becky,
Conrad Daniel,
Kepley Christopher L.
Publication year - 2010
Publication title -
clinical and translational science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.303
H-Index - 44
eISSN - 1752-8062
pISSN - 1752-8054
DOI - 10.1111/j.1752-8062.2010.00212.x
Subject(s) - degranulation , cytokine , mast cell , immunoglobulin e , immunology , chemistry , in vivo , pharmacology , allergic response , basophil , allergic inflammation , in vitro , allergy , microbiology and biotechnology , biochemistry , biology , receptor , antibody
Treatments for allergic disease block the effects of mediators released from activated mast cells and blood basophils. A panel of fullerene derivatives was synthesized and tested for their ability to preempt the release of allergic mediators in vitro and in vivo . The fullerene C 70 ‐tetraglycolic acid significantly inhibited degranulation and cytokine production from mast cells and basophils, while C 70 ‐tetrainositol blocked only cytokine production in mast cells and degranulation and cytokine production in basophils. The early phase of FcɛRI inhibition was dependent on the blunted release of intracellular calcium stores, elevations in reactive oxygen species, and several signaling molecules. Gene microarray studies further showed the two fullerene derivatives inhibited late phase responses in very different ways. C 70 ‐tetraglycolic acid was able to block mast cell‐driven anaphylaxis in vivo , while C 70 ‐tetrainositol did not. No toxicity was observed with either compound. These findings demonstrate the biological effects of fullerenes critically depends on the moieties added to the carbon cage and suggest they act on different FcɛRI‐specific molecules in mast cells and basophils. These next generation fullerene derivatives represent a new class of compounds that interfere with FcɛRI signaling pathways to stabilize mast cells and basophils. Thus, fullerene‐based therapies may be a new approach for treating allergic diseases. Clin Trans Sci 2010; Volume 3: 158–169

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here