z-logo
Premium
Assessing the Relationship Between Landscape Patterns and Nonpoint‐Source Pollution in the Danjiangkou Reservoir Basin in China 1
Author(s) -
Hao Fanghua,
Zhang Xuan,
Wang Xiao,
Ouyang Wei
Publication year - 2012
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/j.1752-1688.2012.00677.x
Subject(s) - nonpoint source pollution , pollution , environmental science , soil and water assessment tool , water quality , water pollution , land use , hydrology (agriculture) , pollutant , structural basin , nutrient , water resource management , drainage basin , environmental protection , environmental engineering , ecology , environmental chemistry , geography , geology , chemistry , paleontology , cartography , geotechnical engineering , streamflow , biology
  The constrained ordination method from quantitative ecology was utilized to assess the relationship between landscape patterns and nonpoint‐source (NPS) pollution for the purpose of identifying effective water‐quality improvement practices in Danjiangkou Reservoir (DJKR) basin, China. The soil and water assessment tool (SWAT) was applied to simulate NPS pollution and the Fragstats model was applied to calculate the landscape metrics. The study concluded that organic nutrients formed the main NPS pollutant in the DJKR basin and that most of the NPS pollution occurred along with soil loss. Based on partial redundancy analysis, the conclusion that landscape metrics were significantly correlated to NPS pollution indices was obtained. Specifically, the composition of LULC (land use/land cover) was the most effective factor to estimate NPS pollution. Dry cultivated land was identified as the main source of NPS pollution, and paddy fields were characterized with the most intensive soluble nutrients loss. In addition, the reason that fragmented and complex landscape patterns exacerbate NPS pollution was that natural landscape composed most of this area. Moreover, the fragmented natural landscape indicated intensive agricultural activities that were the crucial trigger for NPS pollution. Combined with the economic condition in China, Conversion of Cropland to Forests Program (CCFP) should be conducted selectively and gradually in the DJKR basin.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here