z-logo
Premium
Importance of Crop Yield in Calibrating Watershed Water Quality Simulation Tools 1
Author(s) -
Nair Sujithkumar Surendran,
King Kevin W.,
Witter Jonathan D.,
Sohngen Brent L.,
Fausey Norman R.
Publication year - 2011
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/j.1752-1688.2011.00570.x
Subject(s) - watershed , environmental science , yield (engineering) , water quality , crop , hydrology (agriculture) , crop yield , quality (philosophy) , agricultural engineering , water resource management , agronomy , geology , computer science , engineering , ecology , materials science , machine learning , philosophy , epistemology , geotechnical engineering , metallurgy , biology
Surendran Nair, Sujithkumar, Kevin W. King, Jonathan D. Witter, Brent L. Sohngen, and Norman R. Fausey, 2011. Importance of Crop Yield in Calibrating Watershed Water Quality Simulation Tools. Journal of the American Water Resources Association (JAWRA) 47(6):1285–1297. DOI: 10.1111/j.1752‐1688.2011.00570.x Abstract:  Watershed‐scale water‐quality simulation tools provide a convenient and economical means to evaluate the environmental impacts of conservation practices. However, confidence in the simulation tool’s ability to accurately represent and capture the inherent variability of a watershed is dependent upon high quality input data and subsequent calibration. A four‐stage iterative and rigorous calibration procedure is outlined and demonstrated for Soil Water Analysis Tool (SWAT) using data from Upper Big Walnut Creek (UBWC) watershed in central Ohio, USA. The four stages and the sequence of their application were: (1) parameter selection, (2) hydrology calibration, (3) crop yield calibration, and (4) nutrient loading calibration. Following the calibration, validation was completed on a 10 year period. Nash‐Sutcliffe efficiencies for streamflow over the validation period were 0.5 for daily, 0.86 for monthly, and 0.87 for annual. Prediction efficiencies for crop yields during the validation period were 0.69 for corn, 0.54 for soybeans, and 0.61 for wheat. Nitrogen loading prediction efficiency was 0.66. Compared to traditional calibration approaches (no crop yield calibration), the four‐stage approach (with crop yield calibration) produced improved prediction efficiencies, especially for nutrient balances.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here