Premium
A Method to Assess and Define Environmental Flow Rules for Large Jurisdictional Regions 1
Author(s) -
Snelder Ton,
Booker Doug,
Lamouroux Nicolas
Publication year - 2011
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/j.1752-1688.2011.00556.x
Subject(s) - rule of thumb , reliability (semiconductor) , variable (mathematics) , resource (disambiguation) , environmental flow , scale (ratio) , environmental science , set (abstract data type) , computer science , ecosystem , flow (mathematics) , habitat , hydrology (agriculture) , environmental resource management , operations research , ecology , geography , mathematics , engineering , geology , cartography , algorithm , mathematical analysis , computer network , biology , power (physics) , geometry , quantum mechanics , climatology , programming language , physics , geotechnical engineering
Snelder, Ton, Doug Booker, and Nicolas Lamouroux, 2011. A Method to Assess and Define Environmental Flow Rules for Large Jurisdictional Regions. Journal of the American Water Resources Association (JAWRA) 47(4):828‐840. DOI: 10.1111/j.1752‐1688.2011.00556.x Abstract: Hydrological rules of thumb are used across jurisdictional regions to set minimum flows and allocation limits that apply by default (i.e., when more detailed site‐scale studies have not been carried out). Uniform rules do not account for spatial variation in environmental characteristics, resulting in inconsistent consequences for the protection of ecosystems, and the reliability of water resources. We developed a method for assessing hydrological rules of thumb that describes their consequences for protection of the ecosystem (in terms of retention of physical habitat) and the reliability of the water resource. The method links regionalized flow duration curves, at‐station hydraulic geometry, and generalized physical habitat models to make assessments at many locations across a region. The method estimates, for a given set of rules, the retained physical habitat for specified taxa/life stages and the proportion of the time abstractions are restricted. We applied the method to assess a set of rules that are proposed as default minimum flows and allocation limits for New Zealand rivers. The assessment showed that the minimum flow rules had variable consequences. The method could be used to quantify the tradeoff between environmental protection and water resources availability and reliability.