Premium
Methodology for Developing Flood Rule Curves Conditioned on El Niño‐Southern Oscillation Classification 1
Author(s) -
Lee SeYeun,
Hamlet Alan F.,
Fitzgerald Carolyn J.,
Burges Stephen J.
Publication year - 2011
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/j.1752-1688.2010.00490.x
Subject(s) - flood myth , flood control , 100 year flood , hydrology (agriculture) , streamflow , environmental science , flood forecasting , climatology , water resources , floodplain , drainage basin , structural basin , water resource management , el niño southern oscillation , geography , geology , cartography , archaeology , biology , ecology , paleontology , geotechnical engineering
Lee, Se‐Yeun, Alan F. Hamlet, Carolyn J. Fitzgerald, and Stephen J. Burges, 2011. Methodology for Developing Flood Rule Curves Conditioned on El Niño‐Southern Oscillation Classification. Journal of the American Water Resources Association (JAWRA) 47(1):81‐92. DOI: 10.1111/j.1752‐1688.2010.00490.x Abstract: Regional climate varies on interannual and decadal time scales that in turn affect annual streamflows, flood risks, and reservoir storage deficits in mid‐summer. However, these variable elements of the climate system are generally not included in water resources operating policies that attempt to preserve a balance between flood risk and other water resources system objectives. A methodology for incorporating El Niño‐Southern Oscillation (ENSO) information in designing flood control curves is investigated. An optimization‐simulation procedure is used to develop a set of ENSO‐conditioned flood control rule curves that relate streamflow forecasts to flood control evacuation requirements. ENSO‐conditioned simulated flood risk and storage deficits under current operating policy are used to calibrate a unique objective function for each ENSO classification. Using a case study for the Columbia River Basin, we demonstrate that ENSO‐conditioned flood control curves constructed using the optimization‐simulation procedure consistently reduce storage deficits at a number of interrelated projects without increasing flood risk. For the Columbia Basin, the overall improvements in reservoir operations are relatively modest, and (in isolation) might not motivate a restructuring of flood control operations. However, the technique is widely applicable to a wide range of water resources systems and/or different climate indices.