Premium
HISTORICAL TRENDS IN SEDIMENTATION RATES AND SEDIMENT PROVENANCE, FAIRFIELD LAKE, WESTERN NORTH CAROLINA 1
Author(s) -
Miller Jerry R.,
Lord Mark,
Yurkovich Steven,
Mackin Gail,
Kolenbrander Lawrence
Publication year - 2005
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/j.1752-1688.2005.tb03785.x
Subject(s) - provenance , sediment , sedimentation , geology , bedrock , watershed , sedimentary depositional environment , hydrology (agriculture) , structural basin , streams , land cover , drainage basin , physical geography , geochemistry , land use , geomorphology , ecology , geotechnical engineering , geography , computer network , cartography , machine learning , computer science , biology
Sedimentation rates and sediment provenance were examined for lacustrine sediments deposited in Fairfield Lake, western North Carolina, during the past 111 years. Stratigraphic, radionuclide, and cartographic data indicate that sedimentation rates have increased several fold during the past three decades in response to localized development. The magnitude of increased sedimentation was surprising given limited development within the basin: 0.12 to 0.68 buildings/ha in 2000 in those parts directly delivering sediment to the dated cores. Thus, the analysis illustrates the potential sensitivity of watersheds in the southern Appalachians to changes in land cover. An approach that combined geochemical fingerprinting with sediment mixing models was subsequently evaluated to determine its ability to accurately estimate the contribution of sediment from (1) major bedrock formations that underlie the watershed and (2) potential sources associated with four land cover categories. Sediment sources in both analyses proved difficult to geochemically fingerprint to greater than 90 percent accuracy using data on acid‐soluble metals and selected isotopes of lead (Pb). The relative contributions of sediment from delineated sources, estimated by the mixing models, generally corresponded with known temporal and spatial patterns of land cover. However, the models were plagued by two significant problems — the chemical alteration of sediments as they were transported through upland streams to depositional sites within the lake and the loss of elemental mass. Thus, future investigations using the fingerprinting approach in this area of intense weathering, and presumably others, will need to modify the existing methods to more accurately elucidate changes in sediment provenance related to development.