Premium
IMPACT OF COAL SURFACE MINING AND RECLAMATION ON SURFACE WATER CHEMICAL CONCENTRATIONS AND LOAD RATES IN THREE OHIO WATERSHEDS 1
Author(s) -
Bonta James V.,
Dick Warren A.
Publication year - 2003
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/j.1752-1688.2003.tb04406.x
Subject(s) - land reclamation , baseflow , environmental science , hydrology (agriculture) , streams , surface mining , watershed , surface water , coal mining , coal , environmental engineering , streamflow , chemistry , drainage basin , geology , ecology , geotechnical engineering , geography , computer network , cartography , organic chemistry , machine learning , computer science , biology
Information is lacking on the watershed scale effects of mining and reclaiming originally undisturbed watersheds for coal on surface water chemical concentrations and load rates for a variety of constituents. These effects were evaluated on three small, geologically dissimilar watersheds subjected to surface mining in Ohio. Comparisons were made between phases of land disturbances using ratios of average concentrations and load rates: Phase 1 (natural), subphases of Phase 2 (mining and reclamation), and subphases of Phase 3 (partial reclamation and final condition) using 4,485 laboratory analyses of 34 constituents. Average concentration and load rate ratios were categorized into three classes—minor, moderate, and substantial. Mining and reclamation (M/R) affected flow duration curves in different ways‐baseflow changes were variable, but high flows generally increased. The average concentration ratios for all sites were classified as 15 percent “minor,” 36 percent “moderate,” and 49 percent “substantial” (average ratio of 2.4.) Generally load rate ratios increased due to mining and reclamation activities (average ratio of 3.3). Minor, moderate, and substantial impacts were found on average for 7 percent, 23 percent, and 70 percent, respectively, of load rate ratios. The impact of M/R on average load rates was not necessarily the same as on average concentrations due to changed hydrology and can be opposite in effect. The evaluation of the impacts of M/R requires knowledge of changing hydrologic conditions and changing supplies and rates of release of chemicals into streams. Median sediment concentration ratio is an indicator of average constituent load rate ratio of a wide variety of chemical constituents and is useful for development of best management practices to reduce chemical loads. The site at which diversion ditches were not removed during final reclamation sustained large chemical load rates, and removal of diversions at the other mined site reduced load rates. Revegetation of poorly reclaimed areas decreased chemical load rates. Chemical load rates were sensitive to geology, mining, and reclamation methods, diversions, and changing hydrology, concentration flow rate regressions, and watershed areas.