z-logo
Premium
RAINGAGE NETWORK DESIGN USING NEXRAD PRECIPITATION ESTIMATES 1
Author(s) -
Bradley A. Allen,
PetersLidard Christa,
Nelson Brian R.,
Smith James A.,
Young C. Bryan
Publication year - 2002
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/j.1752-1688.2002.tb04354.x
Subject(s) - precipitation , environmental science , quantitative precipitation estimation , meteorology , spatial variability , storm , rain gauge , sampling (signal processing) , radar , quantitative precipitation forecast , weather radar , computer science , statistics , geography , mathematics , telecommunications , filter (signal processing) , computer vision
A general framework is proposed for using precipitation estimates from NEXRAD weather radars in raingage network design. NEXRAD precipitation products are used to represent space time rainfall fields, which can be sampled by hypothetical raingage networks. A stochastic model is used to simulate gage observations based on the areal average precipitation for radar grid cells. The stochastic model accounts for subgrid variability of precipitation within the cell and gage measurement errors. The approach is ideally suited to raingage network design in regions with strong climatic variations in rainfall where conventional methods are sometimes lacking. A case study example involving the estimation of areal average precipitation for catchments in the Catskill Mountains illustrates the approach. The case study shows how the simulation approach can be used to quantify the effects of gage density, basin size, spatial variation of precipitation, and gage measurement error, on network estimates of areal average precipitation. Although the quality of NEXRAD precipitation products imposes limitations on their use in network design, weather radars can provide valuable information for empirical assessment of rain‐gage network estimation errors. Still, the biggest challenge in quantifying estimation errors is understanding subgrid spatial variability. The results from the case study show that the spatial correlation of precipitation at subgrid scales (4 km and less) is difficult to quantify, especially for short sampling durations. Network estimation errors for hourly precipitation are extremely sensitive to the uncertainty in subgrid spatial variability, although for storm total accumulation, they are much less sensitive.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here