Premium
SOIL MOISTURE SENSORS FOR URBAN LANDSCAPE IRRIGATION: EFFECTIVENESS AND RELIABILITY 1
Author(s) -
Qualls Russell J.,
Scott Joshua M.,
DeOreo William B.
Publication year - 2001
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/j.1752-1688.2001.tb05492.x
Subject(s) - environmental science , irrigation , water content , reliability (semiconductor) , water conservation , hydrology (agriculture) , moisture , engineering , geography , meteorology , geotechnical engineering , power (physics) , physics , quantum mechanics , biology , ecology
Granular matrix soil moisture sensors were used to control urban landscape irrigation in Boulder, Colorado, during 1997. The purpose of the study was to evaluate the effectiveness and reliability of the technology for water conservation. The 23 test sites included a traffic median, a small city park, and 21 residential sites. The results were very good. The system limited actual applications to an average of 73 percent of the theoretical requirement. This resulted in an average saving of $331 per installed sensor. The sensors were highly reliable. All 23 sensors were placed in service at least three years prior to the 1997 study during earlier studies. Of these, only two had failed by the beginning of the 1997 study, both due to external factors. Including replacement of these failed sensors, the total repair cost for the 1997 irrigation season was less than $270. The effort required to maintain each system was small, only about 6–7 minutes per visit. Each site was visited weekly for this study, but less frequent visits could be made in practice. The sensors observed in this study performed well, significantly reduced water consumption, and were easy to monitor and maintain. Soil moisture sensors appear to be a useful and economical tool for urban water conservation.