Premium
INTEGRATING DIFFUSEINONPOINT POLLUTION CONTROL AND WATER BODY RESTORATION INTO WATERSHED MANAGEMENT 1
Author(s) -
Novotny Vladimir
Publication year - 1999
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/j.1752-1688.1999.tb04169.x
Subject(s) - total maximum daily load , environmental science , watershed , water quality , watershed management , water resource management , pollution , pollutant , nonpoint source pollution , wetland , hydrology (agriculture) , water pollution , clean water act , environmental resource management , environmental engineering , computer science , engineering , ecology , geotechnical engineering , machine learning , biology
The objective of water quality/watershed management is attainment of water quality goals specified by the Clean Water Act. The Total Maximal Daily Load (TMDL) planning process is a tool to set up watershed management. However, TMDL methodologies and concepts have several problems, including determination of Loading Capacity for only low flow critical periods that preclude consideration of wet weather sources in water quality management. Research is needed to develop watershed pollutant loading and receiving waters Loading Capacity models that will link wet and dry weather pollution loads to the probability of the exceedence of water quality standards. The long term impact of traditional Best Management Practices as well as ponds and wetlands, must be reassessed to consider long term accumulation of conservative toxic compounds. Socioeconomic research should focus on providing information on economic and social feasibility of implementation of additional controls in water quality limited watersheds.