Premium
UNCERTAINTY ANALYSIS OF RUNOFF ESTIMATES FROM A RUNOFF CONTOUR MAP 1
Author(s) -
Rochelle Barry P,
Stevens Donald L.,
Church M. Robbins.
Publication year - 1989
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/j.1752-1688.1989.tb03084.x
Subject(s) - surface runoff , runoff curve number , watershed , interpolation (computer graphics) , runoff model , environmental science , hydrology (agriculture) , contour line , multivariate interpolation , statistics , mathematics , geology , meteorology , computer science , geography , geotechnical engineering , animation , ecology , computer graphics (images) , machine learning , bilinear interpolation , biology
The U.S. Environmental Protection Agency (EPA) in cooperation with the U.S. Geological Survey (USGS) conducted an analysis to quantify the uncertainty associated with interpolating runoff to specific sites using a runoff contour map. We interpolated runoff to 93 gaged watersheds from a runoff contour map using (1) hand interpolation to the watershed outlet, (2) a computer interpolation to the watershed outlet, and (3) hand interpolation to the watershed centroid. We compared the interpolated values to the actual gaged values and found that there was a bias in the average interpolated value for runoff estimated at basin outlets, with interpolated values being less than the actual. We found no significant difference between the hand interpolation method and the computer interpolation method except that the computer method tended to have higher variability due to factors inherent to the software used. There were no strong spatial correlations or regional patterns in the runoff interpolations, which indicates that there are no regional biases introduced in the development of the contour map. We determined that we could estimate runoff, on the average, within approximately 8.9 cm (3.5 in; 15 percent) of the measured value using the three methods. The results of this work indicate that runoff contour maps can he used in regional studies to estimate runoff to ungaged systems with quantifiable uncertainty.