z-logo
Premium
CONTRIBUTION OF PRECIPITATION TO QUALITY OF URBAN STORM RUNOFF 1
Author(s) -
Halverson Howard G.,
DeWalle David R.,
Sharpe William E.
Publication year - 1984
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/j.1752-1688.1984.tb04793.x
Subject(s) - surface runoff , environmental science , precipitation , hydrology (agriculture) , phosphorus , stormwater , sulfate , water quality , storm , first flush , water balance , chemistry , geography , geology , meteorology , ecology , geotechnical engineering , biology , organic chemistry
Summary Precipitation and runoff samples were collected for 13 storms in a nonindustrial urban area in Central Pennsylvania between July 1980 and June 1981. Runoff was collected from tree surfaces, a residential roof and street, a shopping mall parking lot, a downtown business district alley, and a heavily traveled street. Analysis of the water samples showed 10 to 25 percent of the nitrogen, 25 percent of the sulfate, and less than 5 percent of the phosphorus, potassium, and calcium in water below a tree was deposited by the precipitation. The residential roof caused insignificant changes in water chemistry. The results for the four paved areas showed that all the nitrogen, and from 16 to 40 percent of the sulfate and 13, 4, and 2 percent of the phosphorus, potassium, and calcium, respectively, in runoff was deposited by the precipitation. Precipitation can also be an important source of sulfate and phosphorus in runoff. All of the surfaces raised the pH of the runoff, with the largest increases, from a pH of 4 to about 7, occurring in runoff from the paved areas. Precipitation and runoff chemistry was not related to antecedent conditions such as the length of the preceding dry period.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here