Premium
SOURCES OF VARIABILITY IN PHOSPHORUS AND CHLOROPHYLL AND THEIR EFFECTS ON USE OF LAKE SURVEY DATA 1
Author(s) -
Knowlton Matthew F.,
Hoyer Mark V.,
Jones John R.
Publication year - 1984
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/j.1752-1688.1984.tb04722.x
Subject(s) - replicate , magnitude (astronomy) , chlorophyll a , environmental science , statistics , regression analysis , range (aeronautics) , coefficient of variation , mathematics , biology , botany , materials science , astronomy , composite material , physics
: Summer lake survey measurements of total phosphorus (TP) and chlorophyll a (CHLa) from 188 reserviors and natural lakes in the midwest were analyzed to determine the magnitude of major sources of variability. Median variance among replicate samples collected at the same location and time was about 7‐8 percent of the mean for both TP and CHLa. Median observed temporal variability within summers was 27 percent of the mean for TP and 45 percent of the mean for CHLa. Median values of year‐to‐year variance in average TP and CHLa were 22 percent and 31 percent of the mean, respectively. A range of approximately two orders of magnitude was observed among individual estimates of variance in each of these categories. The magnitude of observed temporal variability was affected only slightly by variance among replicate samples on individual days and was weakly correlated with the length of time during which samples were collected from individual lakes. Observed temporal variation was similar between reservoirs and natural lakes when variances were calculated with logtransformed data. The magnitude of temporal and year‐to‐year variance can severely limit the power of statistical comparisons of TP and CHLa means, but has less effect on establishing relative rankings of lake means, Sources and relative magnitude of variability are important in the use of TP and CHLa data in regression models and in the planning of lake surveys and subsequent data analysis.