z-logo
Premium
Direct Current Plasma Emission Spectrometric Determination of Major, Minor and Trace Elements in Microwave Oven Acid Leachates of Powdered Whole Coal Samples
Author(s) -
Fadda Sandro
Publication year - 2005
Publication title -
geostandards and geoanalytical research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.037
H-Index - 73
eISSN - 1751-908X
pISSN - 1639-4488
DOI - 10.1111/j.1751-908x.2005.tb00661.x
Subject(s) - coal , microwave oven , inductively coupled plasma , microwave , leachate , environmental chemistry , chemistry , analytical chemistry (journal) , trace (psycholinguistics) , current (fluid) , plasma , environmental science , organic chemistry , engineering , electrical engineering , telecommunications , linguistics , philosophy , physics , quantum mechanics
Major concentrations of Al 2 O 3 , Fe 2 O 3 , MgO, CaO, Na 2 O and K 2 O, minor levels of TiO 2 , P 2 O 5 and thirty petrologically, geochemically and environmentally significant trace elements have been determined in microwave oven acid leachates of whole powdered coal samples by direct current plasma‐atomic emission spectrometry (DCP‐AES). A single sample preparation procedure was suitable for all the determinations with no additional dilution step for major elements solution. Dried samples (0.5 g) were treated in low‐pressure PFA digestion vessels with HF/HCl/HNO 3 /HClO 4 acids to quantitatively extract the analytes from the bulk material, while leaving the major part of organic matrix as a residue. The major constituents of geological samples, in particular the easily ionised elements (EIEs) such as alkali and alkaline earths, may complicate the instrumental determinations in DCP‐AES because of differential enhancements of elemental emission intensities and stray light interferences. Taking account of these factors, the coal matrix is considered to have very low major oxide totals as compared to many other common geo‐environmental and related materials (rocks, sediments, soil, ashes etc.). The sample size employed here, while yielding a relatively concentrated solution to cover a wide range of elemental determinations, provided a sample matrix that significantly diminished interferences for DCP measurements. The need for closely matching the unknowns and calibrators was eliminated except for overall acidity and an excess quantity of caesium for EIE buffering. Calibration of the spectrometer was accomplished by simple aqueous single element solutions as high concentration calibrators in addition to a reagent blank as a low concentration calibrator. Two point working curves were established to allow for the maximum concentrations of each element expected in the unknowns. The precision of determinations under routine conditions as well as the reproducibility of the leaching and precision of instrumental measurements have been evaluated. Relative standard deviations (RSD) were of 1–2% for those elements whose concentrations in solid samples were well above the limits of quantification. Method detection limits in the buffered solutions were also evaluated. To evaluate the accuracy of the microwave oven‐DCP method a suite of eight certified coal reference materials of differing rank, were analysed with good agreement with the certified and/or available published data. Results are presented for the uncertified major oxides in the AR series reference materials.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here