z-logo
open-access-imgOpen Access
Small‐molecule elicitation of microbial secondary metabolites
Author(s) -
Pettit Robin K.
Publication year - 2011
Publication title -
microbial biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.287
H-Index - 74
ISSN - 1751-7915
DOI - 10.1111/j.1751-7915.2010.00196.x
Subject(s) - secondary metabolite , natural product , secondary metabolism , computational biology , biology , metabolic engineering , metabolite , fermentation , metabolic pathway , microorganism , gene , bacteria , biochemistry , microbiology and biotechnology , biosynthesis , genetics
Summary Microbial natural products continue to be an unparalleled resource for pharmaceutical lead discovery, but the rediscovery rate is high. Bacterial and fungal sequencing studies indicate that the biosynthetic potential of many strains is much greater than that observed by fermentation. Prodding the expression of such silent (cryptic) pathways will allow us to maximize the chemical diversity available from microorganisms. Cryptic metabolic pathways can be accessed in the laboratory using molecular or cultivation‐based approaches. A targeted approach related to cultivation‐based methods is the application of small‐molecule elicitors to specifically affect transcription of secondary metabolite gene clusters. With the isolation of the novel secondary metabolites lunalides A and B, oxylipins, cladochromes F and G, nygerone A, chaetoglobosin‐542, ‐540 and ‐510, sphaerolone, dihydrosphaerolone, mutolide and pestalone, and the enhanced production of known secondary metabolites like penicillin and bacitracin, chemical elicitation is proving to be an effective way to augment natural product libraries.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here