z-logo
Premium
Applications of the Likelihood Theory in Finance: Modelling and Pricing
Author(s) -
Janssen Arnold,
Tietje Martin
Publication year - 2013
Publication title -
international statistical review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.051
H-Index - 54
eISSN - 1751-5823
pISSN - 0306-7734
DOI - 10.1111/j.1751-5823.2012.00197.x
Subject(s) - mathematical finance , mathematics , martingale (probability theory) , mathematical economics , econometrics , valuation of options , contiguity , finance , economics , computer science , operating system
Summary This paper discusses the connection between mathematical finance and statistical modelling which turns out to be more than a formal mathematical correspondence. We like to figure out how common results and notions in statistics and their meaning can be translated to the world of mathematical finance and vice versa. A lot of similarities can be expressed in terms of LeCam’s theory for statistical experiments which is the theory of the behaviour of likelihood processes. For positive prices the arbitrage free financial assets fit into statistical experiments. It is shown that they are given by filtered likelihood ratio processes. From the statistical point of view, martingale measures, completeness, and pricing formulas are revisited. The pricing formulas for various options are connected with the power functions of tests. For instance the Black–Scholes price of a European option is related to Neyman–Pearson tests and it has an interpretation as Bayes risk. Under contiguity the convergence of financial experiments and option prices are obtained. In particular, the approximation of Itô type price processes by discrete models and the convergence of associated option prices is studied. The result relies on the central limit theorem for statistical experiments, which is well known in statistics in connection with local asymptotic normal (LAN) families. As application certain continuous time option prices can be approximated by related discrete time pricing formulas.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here