Premium
Nature of the Ore‐Forming Fluid at the Quaternary Noya Gold Deposit in Kyushu, Japan
Author(s) -
Morishita Yuichi,
Takeno Naoto
Publication year - 2010
Publication title -
resource geology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.597
H-Index - 43
eISSN - 1751-3928
pISSN - 1344-1698
DOI - 10.1111/j.1751-3928.2010.00141.x
Subject(s) - calcite , geology , andesite , geochemistry , hydrothermal circulation , isotopes of oxygen , fluid inclusions , quartz , pyrite , vein , mineralogy , mineralization (soil science) , strontium , isotopes of strontium , ore genesis , isotopes of carbon , volcanic rock , volcano , chemistry , total organic carbon , environmental chemistry , paleontology , psychology , organic chemistry , psychiatry , soil science , soil water
We discuss the nature of the ore‐forming hydrothermal fluid in the Noya gold‐bearing calcite‐quartz‐adularia veins of central Kyushu, Japan on the basis of oxygen, carbon, and strontium isotope ratios, and aqueous speciation calculations for the present‐day geothermal fluid. The isotopic values of the Noya ore‐forming fluid were estimated to be −6.5‰ for δ 13 C and −7.5‰ for δ 18 O. The oxygen isotopic equilibrium temperatures for vein calcite are more than 180°C at the bottom of the Noya mineralization zone, and decrease with increasing elevation. As the temperature decreased, the dominant carbon species in the fluid changed from H 2 CO 3 to HCO 3 ‐ at about 120°C. The equilibrium temperatures for vein quartz are consistent with the calcite calculations. The carbon and oxygen isotope trends of the Noya vein calcite and the isotope ratios of strontium suggest that the fluids that precipitated the Noya veins were controlled by an andesite‐dominated geology. Chondrite‐normalized REE patterns for the white‐colored veins from wells 51‐WT‐1 and 51‐WT‐2 displayed a light REE‐rich pattern with positive Eu anomalies, suggesting the existence of a reducing environment for the fluid. The pyrite‐rich gray‐colored veins and a silicified rock from well 51‐WT‐2 showed higher REE concentrations than did the white veins. Altered host andesitic rocks have similar REE patterns to that of the silicified rock, and have higher REE contents than the others in the drill cores. Aqueous speciation calculations showed that the fluid in the hydrothermal reservoir is currently in muscovite stability. The fluid at the ore‐mineralization stage may have contained more potassium or have had a higher pH, so that adularia precipitated with calcite and quartz, as well as gold. Fluid boiling at depth in the system produced the gold‐bearing calcite‐quartz‐adularia veins.