Premium
Geochemistry of K‐feldspar and Muscovite in Rare‐element Pegmatites and Granites from the Totoral Pegmatite Field, San Luis, Argentina
Author(s) -
Oyarzábal Julio,
Galliski Miguel Ángel,
Perino Ernesto
Publication year - 2009
Publication title -
resource geology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.597
H-Index - 43
eISSN - 1751-3928
pISSN - 1344-1698
DOI - 10.1111/j.1751-3928.2009.00100.x
Subject(s) - pegmatite , muscovite , geochemistry , geology , columbite , spodumene , albite , mineralogy , materials science , quartz , metallurgy , ceramic , paleontology
The geochemistry of K‐feldspar for K, P, Sr, Ba, Rb, Cs, Ga, and of muscovite for the same elements plus Nb and Ta, was used for proving the parental relationships of S‐type granites and LCT (Li, Cs, Ta) rare‐element pegmatites in the southernmost pegmatitic field of the Pampean pegmatite province in Argentina. The variation of K/Rb‐Cs, K/Cs‐Rb, K/Rb‐Rb/Sr, K/Rb‐Ba in K‐feldspar from the granites and pegmatites show that they form an association with the evolutional sequence: granites → barren‐ to transitional pegmatites → beryl type, beryl‐columbite‐phosphate pegmatites → complex type of spodumene subtype pegmatites → albite‐spodumene type → albite type pegmatites. This sequence reflects the regional distribution of the different magmatic units. The Ta‐Cs diagram for muscovite reveals that none of the studied pegmatites exceed the threshold established in previous studies for being considered with important tantalum oxide mineralization. The granites and pegmatites constitute a rare‐element pegmatitic field in which different magmatic units form a continuous fractionation trend, extended from the less evolved granitic facies to the most geochemically specialized pegmatites