Premium
Geology and Re‐Os Geochronology of Mineralization of the Miduk Porphyry Copper Deposit, Iran
Author(s) -
Taghipour Nader,
Aftabi Alijan,
Mathur Ryan
Publication year - 2008
Publication title -
resource geology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.597
H-Index - 43
eISSN - 1751-3928
pISSN - 1344-1698
DOI - 10.1111/j.1751-3928.2008.00054.x
Subject(s) - geology , molybdenite , geochemistry , porphyry copper deposit , chalcopyrite , hypogene , anhydrite , pyrite , mineralization (soil science) , stockwork , sericite , iron oxide copper gold ore deposits , breccia , argillic alteration , volcanic rock , epidote , fluid inclusions , quartz , copper , volcano , sphalerite , chlorite , paleontology , chemistry , organic chemistry , gypsum , soil science , soil water
The Miduk porphyry copper deposit is located in Kerman province, 85 km northwest of the Sar Cheshmeh porphyry copper deposit, Iran. The deposit is hosted by Eocene volcanic rocks of andesitic–basaltic composition. The porphyry‐type mineralization is associated with two Miocene calc‐alkaline intrusive phases (P1 and P2, respectively). Five hypogene alteration zones are distinguished at the Miduk deposit, including magnetite‐rich potassic, potassic, potassic–phyllic, phyllic and propylitic. Mineralization occurs as stockwork, dissemination and nine generations (magnetite, quartz–magnetite, barren quartz, quartz‐magnetite‐chalcopyrite‐anhydrite, chalcopyrite–anhydrite, quartz‐chalcopyrite‐anhydrite‐pyrite, quartz‐molybdenite‐anhydrite ± chalcopyrite ± magnetite, pyrite, and quartz‐pyrite‐anhydrite ± sericite) of veinlets and veins. Early stages of mineralization consist of magnetite rich veins in the deepest part of the deposit and the main stage of mineralization contains chalcopyrite, magnetite and anhydrite in the potassic zone. The high intensity of mineralization is associated with P2 porphyry (Miduk porphyry). Based on petrography, mineralogy, alteration halos and geochemistry, the Miduk porphyry copper deposit is similar to those of continental arc setting porphyry copper deposits. The Re‐Os molybdenite dates provide the timing of sulfide mineralization at 12.23 ± 0.07 Ma, coincident with U/Pb zircon ages of the P2 porphyry. This evidence indicates a direct genetic relationship between the Miduk porphyry stock and molybdenite mineralization. The Re‐Os age of the Miduk deposit marks the main stage of magmatism and porphyry copper formation in the Central Iranian volcano‐plutonic belt.