Premium
Depth‐dependent Effects of Ultraviolet Radiation on Survivorship, Oxidative Stress and DNA Damage in Sea Urchin ( Strongylocentrotus droebachiensis ) Embryos from the Gulf of Maine
Author(s) -
Lesser Michael P.
Publication year - 2010
Publication title -
photochemistry and photobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 131
eISSN - 1751-1097
pISSN - 0031-8655
DOI - 10.1111/j.1751-1097.2009.00671.x
Subject(s) - strongylocentrotus droebachiensis , dna damage , pyrimidine dimer , oxidative stress , sea urchin , superoxide dismutase , antioxidant , embryo , biology , reactive oxygen species , dna , chemistry , biophysics , biochemistry , microbiology and biotechnology
A field experiment was conducted on the early embryos of the green sea urchin Strongylocentrotus droebachiensis at different depths in the Gulf of Maine (GOM) to assess the effects of UV radiation (UVR: 300–400 nm) on survivorship, oxidative stress and DNA damage. Embryos experimentally placed at 1 m were exposed to UVB (300–320 nm) where a significant decrease in survivorship was observed as well as significant increases in the activity of the antioxidant enzyme superoxide dismutase and DNA damage. DNA damage includes both cyclobutane pyrimidine dimer photoproducts from direct exposure to UVA (320–400 nm) and indirect DNA damage associated with the production of reactive oxygen species. All embryos had equivalent concentrations of the UVR‐absorbing compounds known as mycosporine‐like amino acids and despite the fact that these compounds absorb primarily in the UVA portion of the spectrum they did not provide protection for embryos from DNA damage in the field at depths less than 5 m. DNA damage and survivorship of green sea urchin embryos in the GOM was directly related to the optical properties of the water column and the differential attenuation of UVB and UVA wavelengths.