z-logo
Premium
Signal Transfer in Haloarchaeal Sensory Rhodopsin– Transducer Complexes †
Author(s) -
Sasaki Jun,
Spudich John L.
Publication year - 2008
Publication title -
photochemistry and photobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 131
eISSN - 1751-1097
pISSN - 0031-8655
DOI - 10.1111/j.1751-1097.2008.00314.x
Subject(s) - halobacterium salinarum , chemistry , biophysics , phosphorylation , protein subunit , rhodopsin , bacteriorhodopsin , biochemistry , membrane , microbiology and biotechnology , biology , retinal , gene
Membrane‐inserted complexes consisting of two photochemically reactive sensory rhodopsin (SR) subunits flanking a homodimer of a transducing protein subunit (Htr) are used by halophilic archaea for sensing light gradients to modulate their swimming behavior (phototaxis). The SR–Htr complexes extend into the cytoplasm where the Htr subunits bind a his‐kinase that controls a phosphorylation system that regulates the flagellar motors. This review focuses on current progress primarily on the mechanism of signal relay within the SRII–HtrII complexes from Natronomonas pharaonis and Halobacterium salinarum. The recent elucidation of a photoactive site steric trigger crucial for signal relay, advances in understanding the role of proton transfer from the chromophore to the protein in SRII activation, and the localization of signal relay to the membrane‐embedded portion of the SRII–HtrII interface, are beginning to produce a clear picture of the signal transfer process. The SR–Htr complexes offer unprecedented opportunities to resolve first examples of the chemistry of signal relay between membrane proteins at the atomic level, which would provide a major contribution to the general understanding of dynamic interactions between integral membrane proteins.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here