Premium
THE ROLE OF CYCLIC ELECTRON FLOW AROUND PHOTOSYSTEM I and EXCITATION ENERGY DISTRIBUTION BETWEEN THE PHOTOSYSTEMS UPON ACCLIMATION TO HIGH IONIC STRESS IN Dunaliella salina
Author(s) -
Canaani Ora
Publication year - 1990
Publication title -
photochemistry and photobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 131
eISSN - 1751-1097
pISSN - 0031-8655
DOI - 10.1111/j.1751-1097.1990.tb01804.x
Subject(s) - photosystem , photosystem ii , quantum yield , photochemistry , dunaliella salina , chemistry , quenching (fluorescence) , photosystem i , ionic bonding , photosynthesis , fluorescence , algae , botany , biology , ion , physics , biochemistry , organic chemistry , quantum mechanics
— The distribution of excitation energy between the two photosystems in the halophylic alga Dunaliella salina has been analyzed under ionic stress. In the transition from state 1 to state 2, it was found that a, the absorption cross‐section of photosystem (PS) I increased from 42 to 49% until an equal distribution between PS I and PS II was obtained in state 2. Acclimation of the algae to different salt concentrations did not change the fractions of light absorbed in PS II and PS I, but slowed down the transition time from state 1 to state 2. A large increase in ΔpH induced fluorescence quenching was observed which was abolished by the uncoupler nigericin. Photoacoustic quantum yield spectra of energy storage indicated a larger energy storage at 700 nm induced upon stress. The additional ΔpH quenching of fluorescence and the additional quantum yield of energy storage at 700 nm, in the stressed algae, are consistent with the operation of a cyclic, energy‐storing pathway in PS I which is uncoupler sensitive.