z-logo
Premium
EXCISION REPAIR IN TETRAHYMENA: EVENTS FOLLOWING REFEEDING OF STARVED UV‐IRRADIATED CELLS
Author(s) -
Mowat David,
Pearlman Ronald E.
Publication year - 1975
Publication title -
photochemistry and photobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 131
eISSN - 1751-1097
pISSN - 0031-8655
DOI - 10.1111/j.1751-1097.1975.tb06622.x
Subject(s) - dna synthesis , biology , dna , semiconservative replication , dna polymerase , dna replication , tetrahymena , polymerase , microbiology and biotechnology , dna repair , biochemistry , eukaryotic dna replication
—Starvation of early‐log‐phase Tetrahymena pyriformis in non‐nutrient phosphate buffer for 24 h results in a 40 per cent increase in cell number, as well as a complete cessation of DNA synthesis. Low levels of DNA synthesis are detectable between 1 and 2h after starved cells are transferred to a nutrient medium. Larger amounts of DNA synthesis are detected after the first 2 h of refeeding, and one round of replication is complete 4.5 h after refeeding. Damage, caused by sublethal doses of UV radiation (254 nm) administered just prior to refeeding, to the DNA of starved Tetrahymena appears to be corrected by an excision‐repair process after refeeding of starved, irradiated cells. Changes in buoyant density of DNA synthesized, rate of DNA synthesis, and the chromatographic distribution of photoproducts were investigated following refeeding of starved, irradiated cells. Excision repair begins 1 h after refeeding and appears to be essentially complete within 7 h. During this time, thymine dimers produced by irradiation are removed. Semiconservative DNA synthesis commences 2–3 h after the first appearance of excision repair. In addition, between 3 and 8 h after refeeding, the rate of DNA synthesis in irradiated, refed cultures is much lower than the rate of DNA synthesis in unirradiated, refed cultures. Also, the specific activity in vitro of DNA polymerase from irradiated refed cells is very much greater than that of polymerase from unirradiated, refed cells.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here