z-logo
Premium
PHOTOCHEMICAL REACTIONS OF AROMATIC KETONES WITH NUCLEIC ACIDS AND THEIR COMPONENTS–III. CHAIN BREAKAGE AND THYMINE DIMERIZATION IN BENZOPHENONE PHOTOSENSITIZED DNA *
Author(s) -
CHARLIER M.,
HELENE C.,
CARRIER W. L.
Publication year - 1972
Publication title -
photochemistry and photobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 131
eISSN - 1751-1097
pISSN - 0031-8655
DOI - 10.1111/j.1751-1097.1972.tb06265.x
Subject(s) - benzophenone , deoxyribose , ketyl , chemistry , radical , photochemistry , thymine , flash photolysis , dna , nucleic acid , thioxanthone , organic chemistry , reaction rate constant , photopolymer , biochemistry , kinetics , polymerization , physics , quantum mechanics , polymer
— Excitation of benzophenone in the presence of calf thymus and E. coli DNA leads to photosensitized damages to the macromolecule. Two main reactions are observed: thymine dimerization and chain break formation. Benzophenone photosensitized chain breaks are also observed in polyadenylic acid. The melting temperature of DNA decreases with the duration of irradiation. Under our experimental conditions, the ratio of the yields of dimers and single‐chain breaks produced in DNA is about 1. Photosensitized damage to deoxyribose residues leading to chain breakage is shown to be similar to that produced by X or γ ray irradiation. The oxygen effect upon chain break production is studied and discussed in relation with its effect upon intermediate species. Thymine dimers are formed following energy transfer from benzophenone in its triplet state. In previous flash‐photolysis studies we showed that benzophenone in its triplet state reacts with water molecules to give ketyl and OH radicals. Ketyl radicals are not involved in reactions with DNA. It is proposed that OH radicals produced in the above reaction are responsible for the production of single‐chain breaks by attack on the deoxyribose residues.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here