Premium
DIFFERENTIAL, LETHAL AND MUTAGENIC ACTION OF 254 nm AND 320–400 nm RADIATION ON SEMI‐DRIED BACTERIA
Author(s) -
WEBB S. J.,
TAI C. C.
Publication year - 1970
Publication title -
photochemistry and photobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 131
eISSN - 1751-1097
pISSN - 0031-8655
DOI - 10.1111/j.1751-1097.1970.tb06045.x
Subject(s) - escherichia coli , dna , thymine , cytochrome b , chemistry , bacteria , cytochrome , oxygen , microbiology and biotechnology , biology , biochemistry , genetics , gene , mitochondrial dna , enzyme , organic chemistry
— The effect of culture conditions on the lethal and mutagenic action of 254 nm (u.v.) and 320–400 nm (b.l.) light has been examined. Ten strains of Escherichin coli were used in these investigations. It was found that semi‐dehydration in aerosols greatly enhanced the lethal and mutagenic actions of both U.V. and b.l., Mutations induced by U.V. were found to be of a random kind, while those produced by b.l. were specific and of a particular biochemical type depending on the strain of cell and its stage of development. The presence of oxygen during irradiation enhanced b.l. effects but had no effect on U.V. damage while anaerobic growth endowed the cells with added resistance to b.l. and u.v., Stationary phase cells of E. coli B/r were found to be mutated by b.l. specifically at a thymine locus and to be more sensitive than E. coli B to the inhibition by b.l. of respiration. Some mutations induced by b.l. in E. coli B/r were found to hinder the cells ability to carry out the photoreversal of U.V. damage. It is suggested that b.1. affects a specific piece of DNA which is in contact with the cytochrome chain of the cytoplasmic membrane and that this contact point between the cytochrome chain and DNA alters sequentially as the cell proceeds through its life cycle.