z-logo
Premium
Effect of Coffee Filtrate, Methylglyoxal, Glyoxal, and Caffeine on Salmonella Typhimurium and S. Enteritidis Survival in Ground Chicken Breasts
Author(s) -
Maletta Anne B.,
Were Lilian M.
Publication year - 2012
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/j.1750-3841.2011.02554.x
Subject(s) - salmonella enteritidis , salmonella , food science , chemistry , methylglyoxal , antimicrobial , chicken breast , caffeine , agar , inoculation , microbiology and biotechnology , biology , bacteria , biochemistry , horticulture , genetics , enzyme , endocrinology
  The antimicrobial effect of roasted coffee filtrate (CF) and dicarbonyls on Salmonella Typhimurium and Salmonella Enteritidis in raw ground chicken breast meat (GCB) was investigated. Coffee was brewed and filtered before addition to GCB. Coffee filtrate with and without added caffeine, methylglyoxal, and/or glyoxal was added to GCB and then inoculated with Salmonella Typhimurium and Salmonella Enteritidis. Ground chicken samples were stomached with peptone water at days 1, 3, 5, and 7, plated on XLD agar with a TSA overlay, and Salmonella survivors were enumerated. CF alone gave less than a 1 Log reduction in all runs compared to control GCB with no treatment. Methylglyoxal (2.28 mg/g GCB) had the greatest antimicrobial effect against Salmonella Typhimurium and Salmonella Enteritidis in GCB with average Log reductions of 2.27 to 3.23, respectively, over the 7 d duration of the experiment compared to control GCB with no treatment. A 1 Log reduction was observed in GCB with CF, 0.93 mg glyoxal, and 1 mg caffeine/g chicken compared to the control and GCB with only CF. Heat‐produced coffee compounds could potentially reduce Salmonella in retail ground chicken and chicken products.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here