z-logo
Premium
Rheology and Microstructure of Carrot and Tomato Emulsions as a Result of High‐Pressure Homogenization Conditions
Author(s) -
LopezSanchez Patricia,
Svelander Cecilia,
Bialek Lucy,
Schumm Stephan,
Langton Maud
Publication year - 2010
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/j.1750-3841.2010.01894.x
Subject(s) - rheology , homogenization (climate) , microstructure , materials science , cell structure , centrifugation , creaming , food science , composite material , chemistry , emulsion , chromatography , biological system , biology , biochemistry , biodiversity , ecology
  High‐pressure homogenization, as a way to further mechanically disrupt plant cells and cell walls compared to conventional blending, has been applied to thermally treated and comminuted carrot and tomato material in the presence of 5% olive oil. Mixes of both vegetables in a 1:1 ratio were also included. Both the effect of homogenization pressure and the effect of multiple process cycles were studied. The different microstructures generated were linked to different rheological properties analyzed by oscillatory and steady state measurements. The results showed that while carrot tissue requires a high shear input to be disrupted into cells and cell fragments, tomato cells were broken across the cell walls already at moderate shear input, and the nature of the tomato particles changed to amorphous aggregates, probably composed of cell contents and cell wall polymers. All the plant stabilized emulsions generated were stable against creaming under centrifugation. While for tomato a low‐pressure multiple cycle and a high‐pressure single‐cycle process led to comparable microstructures and rheological properties, carrot showed different rheological properties after these treatments linked to differences in particle morphology. Mixes of carrot and tomato showed similar rheological properties after homogenizing in a single or in a split‐stream process. Practical Application:  Following consumers’ demand, the food industry has shown a growing interest in manufacturing products free of gums and stabilizers, which are often perceived as artificial. By tailored processing, fresh plant material could be used to structure food products in a more natural way while increasing their nutritional quality.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here