Premium
Folate: A Functional Food Constituent
Author(s) -
Iyer Ramya,
Tomar S.K.
Publication year - 2009
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/j.1750-3841.2009.01359.x
Subject(s) - folic acid , vitamin b12 , vitamin , food science , biology , streptococcus thermophilus , microbiology and biotechnology , fermentation , chemistry , biochemistry , lactobacillus , medicine
Folate, a water‐soluble vitamin, includes naturally occurring food folate and synthetic folic acid in supplements and fortified foods. Mammalian cells cannot synthesize folate and its deficiency has been implicated in a wide variety of disorders. A number of reviews have dwelt up on the health benefits associated with increased folate intakes and many countries possess mandatory folate enrichment programs. Lately, a number of studies have shown that high intakes of folic acid, the chemically synthesized form, but not natural folates, can cause adverse effects in some individuals such as the masking of the hematological manifestations of vitamin B 12 deficiency, leukemia, arthritis, bowel cancer, and ectopic pregnancies. As fermented milk products are reported to contain even higher amounts of folate produced by the food‐grade bacteria, primarily lactic acid bacteria (LAB), the focus has primarily shifted toward the natural folate, that is, folate produced by LAB and levels of folate present in foods fermented by/or containing these valuable microorganisms. The proper selection and use of folate‐producing microorganisms is an interesting strategy to increase “natural” folate levels in foods. An attempt has been made through this review to share information available in the literature on wide ranging aspects of folate, namely, bioavailability, analysis, deficiency, dietary requirements, and health effects of synthetic and natural folate, dairy and nondairy products as a potential source of folate, microorganisms with special reference to Streptococcus thermophilus as prolific folate producer, and recent insight on modulation of folate production levels in LAB by metabolic engineering.