Premium
Effects of Trans and Conjugated LC N‐3 Polyunsaturated Fatty Acids on Lipid Composition and Abdominal Fat Weight in Rats
Author(s) -
Okada T.,
Noguchi R.,
Hosokawa M.,
Fukunaga K.,
Nishiyama T.,
Zaima N.,
Hirata T.,
Miyashita K.
Publication year - 2008
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/j.1750-3841.2008.00916.x
Subject(s) - conjugated linoleic acid , polyunsaturated fatty acid , docosahexaenoic acid , chemistry , eicosapentaenoic acid , metabolism , adipose tissue , fatty acid , food science , linoleic acid , lipid metabolism , stearic acid , biochemistry , organic chemistry
Trans and conjugated fatty acids may exhibit either beneficial or detrimental bioactive effects depending on their metabolic properties. This study was conducted to elucidate if isomerization and conjugation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) demonstrate more favorable bioactivity on lipid metabolism compared to unmodified EPA and DHA. The effects of dietary intake of trans and conjugated forms of EPA and DHA on lipid metabolism were evaluated in animal trials and compared to a control group fed soybean oil. None of the experimental diets showed significant differences from the control in terms of body weight; however, the white adipose tissue weight of rodents fed trans DHA, conjugated EPA (CEPA), and conjugated DHA (CDHA) was significantly lower than the control. Triacylglycerol levels in plasma were significantly decreased in groups fed trans DHA (17.2 mg/dL) and CDHA (31.9 mg/dL) relative to the control (51.3 mg/dL). The total cholesterol concentrations were significantly lower than the control (68.0 mg/dL) in all experimental groups (47.3 to 53.7 mg/dL) except CEPA (58.3 mg/dL). Fatty acid compositions of lipids extracted from rodent livers were influenced by the dietary fatty acid profiles, with all groups showing higher concentrations of stearic acid and lower levels of linoleic acid compared to the control. Rodents fed trans DHA did not have detectable levels of these fatty acid isomers in their livers, suggesting either quick metabolism or a difficulty with bio‐absorption.