Premium
Confidence Intervals for Modeling Anthocyanin Retention in Grape Pomace during Nonisothermal Heating
Author(s) -
Mishra D.K.,
Dolan K.D.,
Yang L.
Publication year - 2007
Publication title -
journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 150
eISSN - 1750-3841
pISSN - 0022-1147
DOI - 10.1111/j.1750-3841.2007.00598.x
Subject(s) - pomace , isothermal process , retort , chemistry , analytical chemistry (journal) , anthocyanin , nonlinear regression , materials science , thermodynamics , chromatography , mathematics , regression analysis , food science , physics , statistics , organic chemistry
Degradation of nutraceuticals in low‐ and intermediate‐moisture foods heated at high temperature (>100 °C) is difficult to model because of the nonisothermal condition. Isothermal experiments above 100 °C are difficult to design because they require high pressure and small sample size in sealed containers. Therefore, a nonisothermal method was developed to estimate the thermal degradation kinetic parameter of nutraceuticals and determine the confidence intervals for the parameters and the predicted Y (concentration). Grape pomace at 42% moisture content (wb) was heated in sealed 202 × 214 steel cans in a steam retort at 126.7 °C for > 30 min. Can center temperature was measured by thermocouple and predicted using Comsol software. Thermal conductivity (k) and specific heat ( C p ) were estimated as quadratic functions of temperature using Comsol and nonlinear regression. The k and C p functions were then used to predict temperature inside the grape pomace during retorting. Similar heating experiments were run at different time–temperature treatments from 8 to 25 min for kinetic parameter estimation. Anthocyanin concentration in the grape pomace was measured using HPLC. Degradation rate constant ( k 110 °C ) and activation energy ( E a ) were estimated using nonlinear regression. The thermophysical properties estimates at 100 °C were k = 0.501 W/m °C, Cp = 3600 J/kg and the kinetic parameters were k 110 °C = 0.0607/min and E a = 65.32 kJ/mol. The 95% confidence intervals for the parameters and the confidence bands and prediction bands for anthocyanin retention were plotted. These methods are useful for thermal processing design for nutraceutical products.