
Widespread Tau and Amyloid‐Beta Pathology Many Years After a Single Traumatic Brain Injury in Humans
Author(s) -
Johnson Victoria E.,
Stewart William,
Smith Douglas H.
Publication year - 2012
Publication title -
brain pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.986
H-Index - 132
eISSN - 1750-3639
pISSN - 1015-6305
DOI - 10.1111/j.1750-3639.2011.00513.x
Subject(s) - tauopathy , chronic traumatic encephalopathy , traumatic brain injury , pathology , neuropathology , medicine , amyloid (mycology) , disease , neurodegeneration , poison control , concussion , injury prevention , psychiatry , environmental health
While a history of a single traumatic brain injury (TBI) is associated with the later development of syndromes of cognitive impairment such as Alzheimer's disease, the long‐term pathology evolving after single TBI is poorly understood. However, a progressive tauopathy, chronic traumatic encephalopathy, is described in selected cohorts with a history of repetitive concussive/mild head injury. Here, post‐mortem brains from long‐term survivors of just a single TBI (1–47 years survival; n = 39) vs. uninjured, age‐matched controls (n = 47) were examined for neurofibrillary tangles (NFTs) and amyloid‐β (Aβ) plaques using immunohistochemistry and thioflavine‐S staining. Detailed maps of findings permitted classification of pathology using semiquantitative scoring systems. NFTs were exceptionally rare in young, uninjured controls, yet were abundant and widely distributed in approximately one‐third of TBI cases. In addition, Aβ‐plaques were found in a greater density following TBI vs. controls. Moreover, thioflavine‐S staining revealed that while all plaque‐positive control cases displayed predominantly diffuse plaques, 64% of plaque‐positive TBI cases displayed predominantly thioflavine‐S‐positive plaques or a mixed thioflavine‐S‐positive/diffuse pattern. These data demonstrate that widespread NFT and Aβ plaque pathologies are present in up to a third of patients following survival of a year or more from a single TBI. This suggests that a single TBI induces long‐term neuropathological changes akin to those found in neurodegenerative disease.