z-logo
open-access-imgOpen Access
Brain‐Derived Neurotrophic Factor Enhances Bcl‐xL Expression Through Protein Kinase Casein Kinase 2‐Activated and Nuclear Factor Kappa B‐Mediated Pathway in Rat Hippocampus
Author(s) -
Chao Chih C.,
Ma Yun L.,
Lee Eminy H.Y.
Publication year - 2011
Publication title -
brain pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.986
H-Index - 132
eISSN - 1750-3639
pISSN - 1015-6305
DOI - 10.1111/j.1750-3639.2010.00431.x
Subject(s) - neurotrophic factors , brain derived neurotrophic factor , casein kinase 2 , neuroprotection , kinase , small interfering rna , microbiology and biotechnology , phosphorylation , signal transduction , transfection , protein kinase a , biology , chemistry , pharmacology , biochemistry , mitogen activated protein kinase kinase , receptor , gene
Brain‐derived neurotrophic factor (BDNF) was shown to produce its neuroprotective effect through extracellular signal‐regulated kinase 1/2 (ERK1/2) and phosphatidylinositol‐3 kinase (PI3‐K) signaling. But whether other pathways also mediate the neuroprotective effect of BDNF is less known. In this study, we found that direct administration of BDNF to rat hippocampal CA1 area dose‐dependently increased the mRNA and protein levels of Bcl‐xL. BDNF also increased protein kinase casein kinase II (CK2) activity and NF‐κB phosphorylation at Ser529 dose‐dependently. Further, transfection of the wild‐type CK2α DNA to CA1 neurons increased nuclear factor kappa B (NF‐κB) phosphorylation and Bcl‐xL mRNA expression, whereas transfection of CK2α156A, the catalytically inactive mutant of CK2α, decreased these measures. Moreover, transfection of CK2α small interfering RNA (siRNA) blocked the enhancing effect of BDNF on NF‐κB phosphorylation and Bcl‐xL expression. These results were further confirmed by treatment of 4,5,6,7‐tetrabromobenzotriazole (TBB), a specific CK2 inhibitor. Transfection of NF‐κBS529A, the dominant negative mutant of NF‐κB, prevented the enhancing effect of BDNF on Bcl‐xL expression. More importantly, BDNF activation of CK2 is not affected by co‐administration of the ERK1/2 inhibitor, PD98059, and the PI3‐K inhibitor, LY294002. These results demonstrate a novel BDNF signaling pathway and provide an alternative therapeutic strategy for the protective effect of BDNF on hippocampal neurons in vivo .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here