
Spinal Cord Neuronal Pathology in Multiple Sclerosis
Author(s) -
Gilmore Christopher P.,
DeLuca Gabriele C.,
Bö Lars,
Owens Trudy,
Lowe James,
Esiri Margaret M.,
Evangelou Nikos
Publication year - 2009
Publication title -
brain pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.986
H-Index - 132
eISSN - 1750-3639
pISSN - 1015-6305
DOI - 10.1111/j.1750-3639.2008.00228.x
Subject(s) - luxol fast blue stain , spinal cord , interneuron , cresyl violet , multiple sclerosis , anatomy , pathology , lumbar , medicine , myelin , atrophy , biology , central nervous system , neuroscience , staining , inhibitory postsynaptic potential , psychiatry
The objective of this study was to assess neuronal pathology in the spinal cord in multiple sclerosis (MS), both within myelinated and demyelinated tissue. Autopsy material was obtained from 38 MS cases and 21 controls. Transverse sections were taken from three spinal cord levels and stained using Luxol Fast Blue/Cresyl Violet and myelin protein immunohistochemistry. Measurements of neuronal number and size were made for all neurons within the anterior horns of the gray matter. Neurons were classified as motoneurons or interneurons according to size criteria. In comparison with controls, both motoneuron and interneuron number were reduced in MS cases at the upper cervical (interneuron P = 0.0549; motoneuron P = 0.0073) and upper thoracic (interneuron P = 0.0507; motoneuron P = 0.0144), but not the lumbar level. Interneuron cross‐sectional area was reduced in MS cases at all levels (upper cervical, P = 0.0000; upper thoracic, P = 0.0002; lumbar, P = 0.0337). Neuronal loss appears to be predominantly related to local gray matter plaques, whereas interneuron atrophy occurs in both myelinated and demyelinated areas.