z-logo
open-access-imgOpen Access
Autosomal Dominant Adult Neuronal Ceroid Lipofuscinosis: a Novel Form of NCL with Granular Osmiophilic Deposits without Palmitoyl Protein Thioesterase 1 Deficiency
Author(s) -
Nijssen Peter C. G.,
Ceuterick Chantal,
Diggelen Otto P.,
Elleder Milan,
Martin JeanJacques,
Teepen Johannes L. J. M.,
Tyynelä Jaana,
Roos Raymund A. C.
Publication year - 2003
Publication title -
brain pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.986
H-Index - 132
eISSN - 1750-3639
pISSN - 1015-6305
DOI - 10.1111/j.1750-3639.2003.tb00486.x
Subject(s) - neuronal ceroid lipofuscinosis , protein subunit , biology , cathepsin d , antiserum , microbiology and biotechnology , biochemistry , gene , enzyme , antibody , genetics
We describe the neuropathological and biochemical autopsy findings in 3 patients with autosomal dominant adult neuronal ceroid lipofuscinosis (ANCL, Parry type; MIM 162350), from a family with 6 affected individuals in 3 generations. Throughout the brain of these patients, there was abundant intraneuronal lysosomal storage of autofluorescent lipopigment granules. Striking loss of neurons in the substantia nigra was found. In contrast, little neuronal cell loss occurred in other cerebral areas, despite massive neuronal inclusions. Visceral storage was present in gut, liver, cardiomyocytes, skeletal muscle, and in the skin eccrine glands. The storage material showed highly variable immunoreactivity with antiserum against subunit c of mitochondrial ATP synthase, but uniform strong immunoreactivity for saposin D (sphingolipid activating protein D). Protein electrophoresis of isolated storage material revealed a major protein band of about 14 kDa, recognized in Western blotting by saposin D antiserum (but not subunit c of mitochondrial ATPase (SCMAS) antiserum). Electron microscopy showed ample intraneuronal granular osmiophilic deposits (GRODs), as occurs in CLN1 and congenital ovine NCL. These forms of NCL are caused by the deficiencies of palmitoyl protein thioesterase 1 and cathepsin D, respectively. However, activities of these enzymes were within normal range in our patients. Thus we propose that a gene distinct from the cathepsin D and CLN1‐CLN8 genes is responsible for this autosomal dominant form of ANCL.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here