z-logo
open-access-imgOpen Access
Genetic Alterations and Aberrant Expression of Genes Related to the Phosphatidyl‐lnositol‐3′‐Kinase/Protein Kinase B (Akt) Signal Transduction Pathway in Glioblastomas
Author(s) -
Knobbe Christiane B.,
Reifenberger Guido
Publication year - 2003
Publication title -
brain pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.986
H-Index - 132
eISSN - 1750-3639
pISSN - 1015-6305
DOI - 10.1111/j.1750-3639.2003.tb00481.x
Subject(s) - pten , pi3k/akt/mtor pathway , biology , protein kinase b , cancer research , microbiology and biotechnology , akt2 , signal transduction , akt1
Glioblastomas frequently carry mutations in the PTEN tumor suppressor gene on 10q23.3. The tumor suppressor properties of Pten are closely related to its inhibitory effect on the phosphatidyl‐inositol‐3’‐kinase (Pi3k)‐dependent activation of protein kinase B (Akt) signalling. Here, we report on the analysis of 17 genes related to the Pi3k/Akt signalling pathway for genetic alteration and aberrant expression in a series of 103 glioblastomas. Mutation, homozygous deletion or loss of expression of PTEN was detected in 32% of the tumors. In contrast, we did not find any aberrations in the inositol polyphosphate phosphatase like‐1 gene (INPPL1) , whose gene product may also counteract Pi3k‐dependent Akt activation. Analysis of genes encoding proteins that may activate the pathway upstream of Pi3k revealed variable fractions of tumors with EGFR amplification (31%), PDGFRA amplification (8%), and IRS2 amplification (2%). The protein tyrosine kinase 2 (PTK2/FAK1) gene was neither amplified nor over‐expressed at the mRNA level. Investigation of three genes encoding catalytic subunits of Pi3k (PIK3CA, PIK3CD , and PIK3C2B) revealed amplification of PIK3C2B (1q32) in 6 tumors (6%). Overexpression of PIK3C2B mRNA was detected in 4 of these cases. PIK3CD (1p36.2) and PIK3CA (3q26.3) were not amplified but PIK3CD mRNA was overexpressed in 6 tumors (6%). Amplification and overexpression of AKT1 was detected in a single case of gliosarcoma. The IRS1, PIK3R1, PIK3R2, AKT2, AKT3, FRAP1 , and RPS6KB1 genes were neither amplified nor overexpressed in any of the tumors. Taken together, our data indicate that different genes related to the Pi3k/Akt signalling pathway may be aberrant in glioblastomas.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here