z-logo
open-access-imgOpen Access
Toward Understanding the Molecular Pathology of Huntington's Disease
Author(s) -
Wellington Cheryl L.,
Brinkman Ryan R.,
O'Kusky John R.,
Hayden Michael R.
Publication year - 1997
Publication title -
brain pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.986
H-Index - 132
eISSN - 1750-3639
pISSN - 1015-6305
DOI - 10.1111/j.1750-3639.1997.tb00897.x
Subject(s) - huntingtin , trinucleotide repeat expansion , huntingtin protein , biology , huntington's disease , exon , polyglutamine tract , genetics , gene , phenotype , disease , allele , pathology , medicine , mutant
Huntington's Disease (HD) is caused by expansion of a CAG trinucleotide beyond 35 repeats within the coding region of a novel gene. Recently, new insights into the relationship between CAG expansion in the HD gene and pathological mechanisms have emerged. Survival analysis of a large cohort of affected and at‐risk individuals with CAG sizes between 39 and 50 repeats have yielded probability curves of developing HD symptoms and dying of HD by a certain age. Animals transgenic for the first exon of huntingtin with large CAG repeats lengths have been reported to have a complex neurological phenotype that bears interesting similarities and differences to HD. The repertoire of huntingtin‐inter‐acting proteins continues to expand with the identification of HIP1, a protein whose yeast homologues have known functions in regulating events associated with the cytoskeleton. The ability of huntingtin to interact with two of its four known protein partners appears to be influenced by CAG length. Caspase 3 (apopain), a key cysteine protease known to play a seminal role in neural apoptosis, has also been demonstrated to specifically cleave huntingtin in a CAG length‐dependent manner. Many of these features are combined in a model suggesting mechanisms by whi h the pathogenesis of HD may be initiated. The development of appropriate in vitro and animal models for HD will allow the validity of these models to be tested.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here