z-logo
open-access-imgOpen Access
Drainage of Brain Extracellular Fluid into Blood and Deep Cervical Lymph and its Immunological Significance
Author(s) -
Cserr Helen F.,
HarlingBerg Christine J.,
Knopf Paul M.
Publication year - 1992
Publication title -
brain pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.986
H-Index - 132
eISSN - 1750-3639
pISSN - 1015-6305
DOI - 10.1111/j.1750-3639.1992.tb00703.x
Subject(s) - immune system , lymph , lymphatic system , antigen , pathology , cerebrospinal fluid , central nervous system , immunology , myelin basic protein , biology , medicine , cervical lymph nodes , myelin , neuroscience , cancer , metastasis
Cerebral extracellular fluids drain from brain to blood across the arachnoid villi and to lymph along certain cranial nerves (primarily olfactory) and spinal nerve root ganglia. Quantification of the connection to lymph in rabbit, cat and sheep, using radiolabeled albumin as a marker of flow, indicates that a minimum of 14 to 47% of protein injected into different regions of brain or cerebrospinal fluid passes through lymph. The magnitude of the outflow to lymph is at variance with the general assumption that the absence of conventional lymphatics from the brain interrupts the afferent arm of the immune response to brain antigens. The immune response to antigens (albumin or myelin basic protein) introduced into the central nervous system (CNS) has been analysed using a rat model with normal brain barrier permeability. The micro‐injection of antigen into brain or cerebrospinal fluid elicits a humoral immune response, with antibody production in cervical lymph nodes and spleen, and also affects cell‐mediated immunity. Furthermore, antigen may be more immunogenic when administered into the CNS than into conventional extracerebral sites. Clearly, the afferent arm of the immune response to antigens, within the CNS, is intact. Modern studies suggest that the efferent arm is also intact with passage of activated lymphocytes into the brain. Results support a new view of CNS immunology which incorporates continuous and highly regulated communication between the brain and the immune system in both health and disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Empowering knowledge with every search

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom