
Original Article: Highly conserved cross‐reactive CD4+ T‐cell HA‐epitopes of seasonal and the 2009 pandemic influenza viruses
Author(s) -
Duvvuri Venkata R. S. K.,
Moghadas Seyed M.,
Guo Hongbin,
Duvvuri Bhargavi,
Heffernan Jane M.,
Fisman David N.,
Wu Gillian E.,
Wu Jianhong
Publication year - 2010
Publication title -
influenza and other respiratory viruses
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.743
H-Index - 57
eISSN - 1750-2659
pISSN - 1750-2640
DOI - 10.1111/j.1750-2659.2010.00161.x
Subject(s) - epitope , virology , hemagglutinin (influenza) , cross reactivity , biology , influenza a virus , pandemic , original antigenic sin , immune system , virus , t cell , antibody , immunology , antigenic drift , covid-19 , medicine , disease , cross reactions , pathology , infectious disease (medical specialty)
Please cite this paper as: Duvvuri et al. (2010) Highly conserved cross‐reactive CD4+ T‐cell HA‐epitopes of seasonal and the 2009 pandemic influenza viruses. Influenza and Other Respiratory Viruses 4(5), 249–258. Background The relatively mild nature of the 2009 influenza pandemic (nH1N1) highlights the overriding importance of pre‐existing immune memory. The absence of cross‐reactive antibodies to nH1N1 in most individuals suggests that such attenuation may be attributed to pre‐existing cellular immune responses to epitopes shared between nH1N1 virus and previously circulating strains of inter‐pandemic influenza A viruses. Results We sought to identify potential CD4+ T cell epitopes and predict the level of cross‐reactivity of responding T cells. By performing large‐scale major histocompatibility complex II analyses on Hemagglutinin (HA) proteins, we investigated the degree of T‐cell cross‐reactivity between seasonal influenza A (sH1N1, H3N2) from 1968 to 2009 and nH1N1 strains. Each epitope was examined against all the protein sequences that correspond to sH1N1, H3N2, and nH1N1. T‐cell cross‐reactivity was estimated to be 52%, and maximum conservancy was found between sH1N1 and nH1N1 with a significant correlation ( P < 0·05). Conclusions Given the importance of cellular responses in kinetics of influenza infection in humans, our findings underscore the role of T‐cell assays for understanding the inter‐pandemic variability in severity and for planning treatment methods for emerging influenza viruses.