
Compensatory Growth of Olive Flounder, Paralichthys olivaceus , Fed the Extruded Pellet with Different Feeding Regimes
Author(s) -
Cho Young Jin,
Cho Sung Hwoan
Publication year - 2009
Publication title -
journal of the world aquaculture society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.655
H-Index - 60
eISSN - 1749-7345
pISSN - 0893-8849
DOI - 10.1111/j.1749-7345.2009.00270.x
Subject(s) - olive flounder , paralichthys , biology , zoology , flounder , feed conversion ratio , weight gain , pellet , juvenile , compensatory growth (organ) , fish <actinopterygii> , protein efficiency ratio , juvenile fish , fishery , body weight , endocrinology , ecology , kidney
This study was performed to determine compensatory growth of juvenile olive flounder fed the extruded pellet (EP) with different feeding regimes. Seven treatments with triplicates of different feeding regimes were prepared; α fish was daily fed for 6 d a week throughout 8 wk (8WF); α fish was starved for 1 wk and then fed for 3 wk twice [(1WS + 3WF) × 2]; β fish was starved for 2 wk and then fed for 6 wk (2WS + 6WF); χ fish was starved for 5 d and then fed for 9 d four times [(5DS + 9DF) × 4]; δ fish was starved for 10 d and then fed for 18 d twice [(10DS + 18DF) × 2]; δ fish was starved for 2 d, fed for 5 d, starved for 3 d, and then fed for 4 d four times [(2DS + 5DF + 3DS + 4DF) × 4]; and φ fish was starved for 4 d, fed for 10 d, starved for 6 d, and then fed for 8 d twice [(4DS + 10DF + 6DS + 8DF) × 2], respectively. Total feeding day was all same, 36 d except for control group (48 d). Weight gain of flounder in the 8WF treatment was higher than that of fish in other treatments. And weight gain of flounder in the 2WS + 6WF treatment was higher than that of fish in the (5DS + 9DF) × 4 and (4DS + 10DF + 6DS + 8DF) × 2 treatments. Feed consumption of flounder in the 8WF treatment was higher than that of fish experienced feed deprivation. Feed efficiency ratio (FER), protein efficiency ratio (PER), and protein retention (PR) were not significantly different among treatments. Chemical composition of the whole body of fish with and without liver, except for moisture content of liver, was not different among treatments. T 3 level of fish in the 8WF and 2WS + 6WF treatments was higher than that of fish in the (5DS + 9DF) × 4 treatment. It can be concluded that juvenile olive flounder achieved better compensatory growth at 6‐wk refeeding after 2‐wk feed deprivation compared with that of fish with different feeding regimes. And T 3 level of fish seemed to partially play an important role in achieving compensatory growth.