z-logo
open-access-imgOpen Access
Possible Effects of Sodium Chloride Treatment on Quality of Effluents from Alabama Channel Catfish Ponds
Author(s) -
Sipauaba Tavares Luacia H.,
Boyd Claude E.
Publication year - 2003
Publication title -
journal of the world aquaculture society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.655
H-Index - 60
eISSN - 1749-7345
pISSN - 0893-8849
DOI - 10.1111/j.1749-7345.2003.tb00059.x
Subject(s) - chloride , catfish , effluent , sodium , conductance , water quality , environmental chemistry , streams , total dissolved solids , aquatic ecosystem , salinity , zoology , biology , environmental engineering , fishery , chemistry , environmental science , ecology , fish <actinopterygii> , mathematics , computer network , organic chemistry , combinatorics , computer science
Channel catfish ponds are treated with salt (sodium chloride) to increase chloride concentration and prevent nitrite toxicity in fish. A survey indicated that most farmers try to maintain chloride concentration of 50 to 100 mg/L in ponds by annual salt applications. Averages and standard deviations for selected water quality variables in salt‐treated ponds were as follows: chloride. 87.2 ± 37.5 mg/L; total dissolved solids (TDS), 336 ± 96 mg/L; specific conductance, 512 ± 164 μmhos/cm. Maximum values were 189 mg/L for chloride, 481 mg/L for TDS, and 825 μmhos/cm for specific conductance. Good correlations between specific conductance values and both chloride and TDS concentrations suggest that specific conductance can be a rapid method for estimating concentrations of these two variables in surface water. The maximum limit for chloride concentration in Alabama streams allowed by the Alabama Department of Environmental Management is 230 mg/L. The usual recommended upper limit of TDS for protection of aquatic life in freshwater streams is 1,000 mg/L. Based on the observed relationship between TDS concentration and specific conductance in Alabama catfish ponds, 1,000 mg/L TDS corresponds to 1,733 μmhos/cm specific conductance. It is unlikely that effluents from salttreated catfish ponds would violate the in‐stream chloride standard of 230 mg/L or harm aquatic life in streanis. Nevertheless, chloride concentrations in ponds should be measured before salt application as a safe guard against excessive salt application and chloride concentrations above the in‐stream chloride standard.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here