Open Access
Phosphorus Availability of Common Feedstuffs to Channel Catfish Ictalurus punctatus as Measured by Weight Gain and Bone Mineralization 1
Author(s) -
Li Meng H.,
Robinson Edwin H.
Publication year - 1996
Publication title -
journal of the world aquaculture society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.655
H-Index - 60
eISSN - 1749-7345
pISSN - 0893-8849
DOI - 10.1111/j.1749-7345.1996.tb00611.x
Subject(s) - ictalurus , catfish , phosphorus , biology , zoology , weight gain , bone meal , meat and bone meal , menhaden , fish meal , soybean meal , nutrient , phosphate , fishery , body weight , endocrinology , ecology , biochemistry , fish <actinopterygii> , chemistry , raw material , bran , organic chemistry
Abstract The efficacy of using weight gain and bone mineralization to estimate phosphorus availability from feed ingredients for channel catfish was investigated at the conclusion of a 12‐wk feeding trial. Juvenile channel catfish (initial weight = 7.8 g/fish) were fed one of seven test diets each containing phosphorus from a single source. All diets were isocaloric, isonitrogenous, and met all nutrient requirements of channel catfish except for phosphorus, which was assumed to be the factor limiting growth. Phosphorus was considered to be 90% available to fish fed the diet containing monosodium phosphate, but a relative value of 100 was assigned to this treatment for purposes of comparison. All other availability values were calculated relative to this value. Phosphorus availabilities (based on weight gain) for wheat middlings, cottonseed meal, and soybean meal were 38%, 43%, and 49%, respectively, which are in the range previously reported for channel catfish. Phosphorus availability values (based on weight gain) for dicalcium phosphate, menhaden fish meal, and meat and bone/blood meal were 82%, 75%, and 84%, respectively. These values were considerably higher (93–96%) than previously reported for catfish when based on bone ash or bone phosphorus. However, availability data based on weight gain for feedstuffs of animal origin generally agreed with phosphorus availability data reported for rainbow trout. Based on our data, mineral utilization by animals in general, and on known physiology of channel catfish, we suggest that weight gain may be a reliable indicator of phosphorus availability and that phosphorus availability values may be overestimated when base on bone mineralization.