z-logo
Premium
The nonlinearity of passive extraocular muscles
Author(s) -
Quaia Christian,
Ying Howard S.,
Optican Lance M.
Publication year - 2011
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.2011.06111.x
Subject(s) - extraocular muscles , nonlinear system , anatomy , physics , physical medicine and rehabilitation , medicine , quantum mechanics
Passive extraocular muscles (EOMs), like most biological tissues, are hyperelastic, that is, their stiffness increases as they are stretched. It has always been assumed, and in a few occasions argued, that this is their only nonlinearity and that it can be ignored in central gaze. However, using novel measurement techniques in anesthetized paralyzed monkeys, we have recently demonstrated that EOMs are characterized by another prominent nonlinearity: the forces induced by sequences of stretches do not sum. Thus, superposition, a central tenet of linear and quasi‐linear models, does not hold in passive EOMs. Here, we outline the implications of this finding, especially in light of the common assumption that it is easier for the brain to control a linear than a nonlinear plant. We argue against this common belief: the specific nonlinearity of passive EOMs may actually make it easier for the brain to control the plant than if muscles were linear.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here