Premium
Toward a Durable Anti‐HIV Gene Therapy Based on RNA Interference
Author(s) -
Berkhout Ben
Publication year - 2009
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.2009.04972.x
Subject(s) - rna interference , biology , caenorhabditis elegans , gene silencing , gene , computational biology , genetics , rna silencing , virology , mechanism (biology) , rna , philosophy , epistemology
Basic research in the field of molecular biology led to the discovery of the mechanism of RNA interference (RNAi) in Caenorhabditis elegans in 1998. RNAi is now widely appreciated as an important gene control mechanism in mammals, and several RNAi‐based gene‐silencing applications have already been used in clinical trials. In this review I will discuss RNAi approaches to inhibit the pathogenic human immunodeficiency virus type 1 (HIV‐1), which establishes a chronic infection that would most likely require a durable gene therapy approach. Viruses, such as HIV‐1, are particularly difficult targets for RNAi attack because they mutate frequently, which allows viral escape by mutation of the RNAi target sequence. Combinatorial RNAi strategies are required to prevent viral escape.