z-logo
Premium
Vestibular and Proprioceptive Contributions to Human Balance Corrections
Author(s) -
Horlings C.G.C.,
Carpenter M.G.,
Honegger F.,
Allum J.H.J.
Publication year - 2009
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.2009.03872.x
Subject(s) - trunk , quiet , proprioception , vestibular system , physical medicine and rehabilitation , sensory system , balance (ability) , biofeedback , electromyography , posturography , psychology , medicine , audiology , physics , neuroscience , biology , ecology , quantum mechanics
Movement strategies controlling quiet stance and rapid balance corrections may have common characteristics. We investigated this assumption for lower leg proprioceptive loss (PL), peripheral vestibular loss (VL), and healthy controls. Our underlying hypothesis was that changes in movement‐strategy modulation following sensory loss would improve with prosthetic biofeedback. Quiet stance was measured under different sensory conditions and compared to corrections induced by multidirection support‐surface tilts. Response synergies were assessed using electromyography recordings from several muscles. Biofeedback of trunk sway during gait and stance tasks used lower trunk rotations to drive head‐band‐mounted vibro‐tactile and auditory actuators. Strategies of quiet stance were different for roll and pitch, depending on sensory conditions. Simultaneously acting strategies were observed for low‐ and high‐frequency sway. PL induced strategies different from those of VL and controls. VL strategies were identical to those of controls but with greater amplitudes. Tilt perturbation movement strategies were similar to high‐frequency strategies of quiet stance—multisegmental. VL induced increased trunk pitch and roll responses with hypermetric trunk muscle responses and hypometric knee responses but unchanged synergies. Increasing PL up the legs caused changed synergies. Biofeedback reduced stance body sway in VL and elderly subjects. In conclusion, several movement strategies underlie quiet stance with high‐frequency strategies being common to those of perturbed stance. PL changes both movement strategies and synergies, whereas VL only causes pathological changes to the modulation depth. Thus, VL is more easily rectified using trunk sway positional biofeedback.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here